106=16(t)^2+32(t)

Simple and best practice solution for 106=16(t)^2+32(t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 106=16(t)^2+32(t) equation:



106=16(t)^2+32(t)
We move all terms to the left:
106-(16(t)^2+32(t))=0
We get rid of parentheses
-16t^2-32t+106=0
a = -16; b = -32; c = +106;
Δ = b2-4ac
Δ = -322-4·(-16)·106
Δ = 7808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7808}=\sqrt{64*122}=\sqrt{64}*\sqrt{122}=8\sqrt{122}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{122}}{2*-16}=\frac{32-8\sqrt{122}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{122}}{2*-16}=\frac{32+8\sqrt{122}}{-32} $

See similar equations:

| 1+6a=11a-11 | | 106=16x+32 | | 1.07^x=200 | | 0,5x-1/3=1/x | | 4.2x–5=4x+1 | | x+1/2x+1/2x=140 | | s-3=-76 | | x+2x–4=122 | | m+19=-7 | | 8(7x−7)=5x | | 1/3x-15=-8 | | 8v+14=11v-10 | | 3m=7.59 | | X=29-2y | | (3x+6)+(41)+(6x-5)+(4x+7)+(62)+(7x-11)=1440 | | 3y=11.7 | | (8x+6)=1118 | | 9-10v=128 | | 5. 2x+5=3x+10-5x | | u/5−1=3= | | (16x+23)+(16x+23)+(16x+23)+(16x+23)+(16x+23)+(16x+23)+(16x+23)+(16x+23)=1080 | | u/5−1=3 | | u5−1=3 | | (16x+23)+(16x+23)+(16x+23)+(16x+23)+(16x+23)+(16x+23)+(16x+23)+(16x+23)=1,080 | | 8+14x=8x-4 | | 6+8x=6x-8x+18 | | 2x/5-x+18/6=23+x/30 | | -4(3-×)=13x+8-5x | | –5p=70 | | (95)+(7x-4)+(90)+(9x-6)+(3x+23)=540 | | 3.9g+4=1.9g+10 | | 8x+4=13x6 |

Equations solver categories